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Summary. A new one-particle zeroth-order Hamiltonian is proposed for perturba- 
tion theory with a complete active space self-consistent field (CASSCF) reference 
function. With the new partitioning of the Hamiltonian, reference functions domin- 
ated by a closed-shell configuration, on one hand, and an open-shell configuration, 
on the other hand, are treated in similar and balanced ways. This leads to a better 
description of excitation energies and dissociation energies. The new zeroth-order 
Hamiltonian has been tested on CH2, SiH2, NH2, CH3, N2, NO, and Oz, for which 
full configuration interaction (FCI) results are available. Further, excitation ener- 
gies and dissociation energies for the N 2 molecule have been compared to corres- 
ponding multireference (MR) CI results. Finally, the dissociation energies for 
a large number of benchmark molecules containing first-row atoms (the "G 1" test) 
have been compared to experimental data. The computed excitation energies 
compare very well with the corresponding FCI and MRCI values. In most cases the 
errors are well below 1 kcal/mol. The dissociation energies, on the other hand, are 
in general improved in the new treatment but have a tendency to be overestimated 
when compared to other more accurate methods. 
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1 Introduction 

The use of perturbation theory for treating electron correlation in atoms and molecules 
is by now well established. From Kelly's pioneering work [1] in the 1960s to the 
present-day program packages [2], perturbation theory applied to chemical problems 
has gained widespread use. There are many reasons for this. First, the property of size 
extensivity, which is easily achieved with perturbation methods, makes perturbation 
theory suitable for application to larger molecules and is convenient in computing 
accurate dissociation energies. Second, the calculation of the second-order correction 
to the self-consistent field (SCF) energy is only a trivial supplement to the SCF code 
and recovers in many cases the major part of the correlation energy. 

In formulating a perturbation method the crucial step is the choice of 
thezeroth-order Hamiltonian. Already in 1934 Moller and Plesset [3] proposed to 
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take the Hart ree-Fock (HF) approximation as the zeroth-order approximation 
to the exact theory. This turned out to be a brilliant choice and later efforts to 
formulate alternative zeroth-order Hamiltonians for the closed-shell reference state 
have not been fruitful [4]. Several suggestions of a perturbation method for the 
open-shell case have been made especially during the last few years [5-7]. What 
most of these theories have in common is the attempt to retain some of the features 
of Moller-Plesset (MP) many-body perturbation theory (MBPT) [8]. The spin 
contamination of the spin-unrestricted HF  wave function and the somewhat slower 
convergence of the perturbation series have directed a lot of research toward 
a restricted formalism. 

Though successful, the perturbation methods described above are limited to 
cases where the HF wave function provides a valid starting point. If the highest 
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 
(LUMO) are almost degenerate the perturbation expansion suffers from apparent 
slow convergence or no convergence at all. A considerable part of the near- 
degeneracy correlation effects can be effectively treated by the multiconfigurational 
(MC) SCF method [9]. With this method it is also possible to obtain electronic 
wave functions that are qualitatively correct at all geometries. A particular kind of 
MCSCF method is the complete active space (CAS) SCF method [9] which was 
introduced in 1980 by Roos and has since become a valuable tool for describing the 
electronic structure of molecular systems in ground and excited states. An obvious 
continuation of improving the description of the electronic structure is to include 
the remaining dynamical electron correlation effects perturbatively. Already in 
1982, Roos et al. [10] made an attempt to implement second-order perturbation 
theory with a CASSCF wave function as the reference function. At the time one had 
to make some severe approximations to bypass the need for higher-order density 
matrices. Ten years later these matrices could be efficiently calculated and a com- 
plete second-order perturbation theory was implemented [11, 12]. This approach, 
denoted CASPT2, has been successfully applied to a large number of chemical 
problems, in particular to molecular structure, electronic spectra, and transition 
metal chemistry (see Refs. [13] and [14] and references therein). The method seems 
to be reliable for a broad range of problems in chemistry and one might wonder 
about the necessity of formulating alternative zeroth-order Hamiltonians. In a sys- 
tematic test of geometries and binding energies of 32 molecules containing first-row 
atoms [15], it was noticed that wave functions dominated by an open-shell 
configuration were favoured over wave functions dominated by a closed-shell 
configuration. This led to dissociation energies underestimated with between 3 and 
6 kcal/mol times the number of extra electron pairs formed. It would be desirable 
to treat these two kinds of wave functions in a similar and more balanced way. We 
have made an attempt to modify the zeroth-order Hamiltonian to achieve this and 
simultaneously retain all the nice properties of the original operator. This will be 
discussed in Section 2. In Section 3 numerous test applications are presented for 
different forms of the zeroth-order Hamiltonian. Comparison of results is made to 
either full configuration interaction (FCI), multireference (MR) CI, or experimental 
data. Finally, in Section 4 the conclusions are given. 

2 Theory 

The greater complexity of multiconfigurational MBPT compared to single-config- 
urational MBPT makes it necessary to choose a zeroth-order Hamiltonian with 
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a simple structure, i.e., preferably a one-particle operator. In our previous work 
[11, 12], the following operator was suggested: 

~Io = PoFPo + P~PP~ + Ps~ fPs~  + Pr~..PPra.., (1) 

where Px are projection operators onto various N-particle spaces, namely the 
space spanned by the reference state, the rest of the CASSCF CI space, the singly 
and doubly excited interacting space, etc. The Fock operator, F, is a one-particle 
operator defined in the following way: 

10 = Efpq/~,~, (2) 
Pq 

where 

fpq = h m + ~ D,s [(pqlrs) - ½(prlsq)], (3) 
r s  

/~pq are the spin-averaged excitation operators, h is the matrix representation of the 
core Hamiltonian operator, D is the density matrix, and (pqprs) are two-electron 
integrals. For the closed-shell (single determinant) reference state P reduces to the 
well-known Fock operator from Hartree-Fock theory./40 is thus a generalization 
of the zeroth-order Hamiltonian in Moller-Plesset MBPT. Here it is also appropri- 
ate to mention that a restricted formalism (one set of orbitals) is used and that both 
the zeroth-order wave function (the CASSCF reference state) and the first-order 
correction to the wave function are eigenfunctions to the spin operators 52 and S~. 
Further, the Fock operator, F, is invariant to orbital rotations within the inactive, 
active, and secondary subspaces, respectively. 

In order to justify a modification of the zeroth-order Hamiltonian above it is 
well motivated to study high-spin open-shell Hartree~Fock theory. Here the Fock  
operator is defined by 

I =  h + Z [Jb --/£b], (4) 
b 

where b refers to occupied spin orbitals, h is the core Hamiltonian operator, and Jb 
and Kb are coulomb and exchange operators, respectively. The matrix representa- 
tion o f f  in the spin e and spin fl orbital spaces is given by 

N ~ 

fgq = hpq + 2 E(4,q~ql4~,qL) + (4~4q1~, 4,r) - (q~4~,IqL 4~)3 
r = l  

N" 

r = N ¢ + l  

NP 

r = l  

N ~ 

+ Z (q~g~b~l~b:~b~), (6) 
r =N ,~+  1 

where h ~ and h ~ are the matrix representations of h in the spin ~ and spin ~ orbital 
spaces, the N ~ electrons of ~ spin are described by the spatial orbitals ~b;, and the 
N ' electrons of/~ spin are described by the spatial orbitals qS~. 
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For the high-spin open-shell (single determinant) reference state the Fock 
matrix in Eq. (3) can be written as 

N a N = 

fpq = hpq + ~ [2(pq[rr) - (prirq)] + ~ [(pqlrr) - ½(prlrq)]. (7) 
r = l  r = N ~ + I  

Apart from the different sets of orbitals used in Eqs. (5)-(7) the largest difference 
betweenfpq,f~,  and fv{ is to be found in the last summation. Althoughfv q is defined 
as an interpolation of the negatives of ionization potentials and electron affinities 
[-11, 12] one can interpret it, by comparing Eqs. (5)-(7) as some sort of an average of 

f~  andfp~. While this seems to be a good compromise for the inactive-inactive and 
secondary-secondary blocks of f it might not be the best choice for the ac- 
tive-active block. This block consists of the open-shell orbitals filled with spin 

electrons. Our proposal is to let this block resemble f]q instead of an average of 
f~  and and fv{. One motivation for this proposal is that for the hydrogen atom the 
orbital energy of the occupied orbital will then contain the core Hamiltonian 
contribution only and no contributions from two-electron integrals. 

There are many possible ways to define a Fock operator for a general CASSCF 
reference state with the property described above for the high-spin open-shell 
(single determinant) wave function. Our first trial was the operator whose matrix 
representation is 

f '  = f +  gl ,  (8) 

where 

gl  = - ¼ [DKd + dKD], (9) 

Kvq = Z (Dd)rs(prlsq), (10) 
r s  

d =  2 1 - 0 ,  (11) 

andf i s  the Fock matrix defined in Eq. (3). The multiple use of the particle and hole 
density matrices D and d in the definition of gl is due to their projection properties. 
The matrix product Dd has nonzero elements for only the active-active subblock. 
Further, the sandwich formula DKd + dKD simply makes the inactive-inactive and 
secondary secondary subblocks of gl  zero and g,  symmetric. For the high-spin 
open-shell (single determinant) reference state the active-active subblock of gl  
reduces to 

1 N= 
(g~)pq = - - ~  Y. (prl,'q), 02) 

r = N a +  1 

just as is desired from the discussion above. 
The matrix gx introduces nonzero elements in the inactive-secondary subblock 

off ' .  Those elements are zero i n f f o r  a converged CASSCF wave function. This is, 
however, a small cosmetic disadvantage which may be removed by replacing g,  by 
g2 defined by 

g 2  = - -  ½ ( D M ) I / Z K ( D K )  1[2 .  (13) 

Only the active-active subblock of g2 is nonzero, and for the high-spin open-shell 
(single determinant) reference state this block reduces to that of gl in Eq. (12). gl 
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and g2 have the same power dependence in D (and d). However, this power 
dependence is not the only possible choice. In this work we have tested a third Fock 
operator by taking g3 defined by 

g3 = - ½ ( D d ) K ( D d )  (14) 

instead of gl in Eq. (8). Again only the active-active subblock of g3 is nonzero, and 
for the high-spin open-shell (single determinant) reference state this block reduces 
to that ofg~ in Eq. (12). The greater power dependence in D (and d) usually will 
make g3 contribute less to f '  than gl and g2 for a general CASSCF reference 
function. 

The major effect of the introduction of a correction to the Fock matrix is an 
enlarged energy gap between the active and secondary orbitals. The enlargement is 
small for CASSCF wave functions dominated by a closed-shell configuration and 
larger for other kinds of wave functions. Since the correction does not affect the 
inactive-inactive and secondary secondary subblocks of the Fock matrix the 
energy gap between the inactive and active orbitals consequently will be reduced. 
The enlarged energy gap between the active and secondary orbitals will lead to 
larger energy denominaters for the more important contributions to the sec- 
ond-order energy. The result is smaller absolute values of the second-order energy 
for reference functions with many open shells. However, if inactive orbitals high in 
energy are present then the decreased energy gap between them and the active 
orbitals may lead to contributions to the second-order energy with small energy 
denominaters. This phenomenon has actually been observed in test calculations on 
the CrF 6 molecule. 

In this work all these suggestions ga, g2, and g3 of a correction to the Fock 
matrix, f have been tested. As is illustrated in the next section the final results are 
almost independent on the choice of the correction while the presence of a correc- 
tion has a great impact of the quality of the results. 

3 Test applications 

For  testing the new zeroth-order Hamiltonian we have calculated excitation 
energies and dissociation energies for various systems. The new partitioning of the 
Hamiltonian is expected to have the largest effect on these properties, although 
other properties will be discussed as well. The acronyms CASPT2[0],  
CASPT2[gl , ] ,  CASPT2[g2],  and CASPT2[-g3] will be used for the second-order 
perturbation theory calculations with a CASSCF reference state. The symbols in 
brackets refer to the correction made to the Fock matrix, f In all CASPT2 
calculations the full corrected Fock matrix was used except in the CASPT2[g l ]  
calculations where the inactive-secondary subblock was left out. 

3.1 The s ingle t - t r ip le t  spli t t ing in C H  2 

The adiabatic IAa-3B 1 separation in CH2 exhibits large differential correlation 
effects and is therefore a good candidate for testing correlation methods. For  
comparison we have used the FCI results of Bauschlicher and Taylor [16]. The 
basis set is of the double zeta plus polarization (DZP) type and for details we refer 
to Ref. [16]. 
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Table 1. The singlet-triplet separation in CH2. A comparison between CASPT2 and FCI 

Method" Energy (a.u.) Exc. energy 
(kcal/mol) 

1A 1 3B 1 

FCI b - 39.027182 - 39.046259 11.97 
(3210) 
CASSCF - 38.945529 - 38.965954 12.82 
CASPT2[0] - 39.013078 - 39.037664 15.43 
CASPT2[,q~] - 39.012868 - 39.033906 13.20 
CASPT2192] - 39.012895 - 39.033643 13.02 
CASPT2193] - 39.013049 - 39.033686 12.95 
CASPT2[0]-FCI 0.014104 0.008595 
CASPT2[9~ ]-FCI 0.014314 0.012353 
CASPT2192]-FCI 0.014287 0.012616 
CASPT2193]-FCI 0.014133 0.012573 
(4220) 
CASSCF - 38.968726 - 38.982741 8.79 
CASPT2[0] - 39.017092 - 39.038660 13.53 
CASPTZ[gx] - 39.016998 - 39.036392 12.17 
CASPT2[gz] - 39.016996 - 39.036249 12.08 
CASPT2193] - 39.017078 - 39.036296 12.06 
(6331) 
CASSCF - 39.007032 - 39.025395 11.52 
CASPT2[0] - 39.023749 - 39.043334 12.29 
CAS PT2 [ 9 ~ ] - 39.023721 - 39.043024 12.11 
CASPT2192] - 39.023709 - 39.042993 12.10 
CASPT2193] -- 39.023743 - 39.043013 12.09 

• The numbers within parentheses are the number of active orbitals used in the CASSCF 
and CASPT2 calculations given in symmetry order: al, bl, b2, and a2 
b FCI results from Ref. [16] 

O n l y  the  six va lence  e lec t rons  were  co r r e l a t ed  and  three  di f ferent  ac t ive  spaces  
w e r e  used. T h e  resul ts  a re  p r e s e n t e d  in T a b l e  1. F o r  t he  smal les t  ac t ive  space  (all 
va lence  o rb i t a l s  act ive)  the  C A S S C F  va lue  is in a ve ry  g o o d  a g r e e m e n t  w i th  the  
F C I  resul t  differ ing wi th  less t h a n  t k c a l / m o l .  A t  the  C A S P T 2  [0] level  of  theory ,  
however ,  the  s i t ua t i on  is severe ly  w o r s e n e d .  W h a t  h a p p e n s  is tha t  the  t r ip le t  s ta te  is 
f a v o u r e d  energe t ica l ly  o v e r  the  s ingle t  s ta te  l ead ing  to  an  o v e r e s t i m a t i o n  of  the  
exc i t a t ion  energy.  T h e  new z e r o t h - o r d e r  H a m i l t o n i a n  is des igned  to  t r ea t  this 
s i t ua t ion  cor rec t ly .  T h e  s inglet  s ta te  d o m i n a t e d  by a c losed-she l l  c o n f i g u r a t i o n  
s h o u l d  be  ha rd ly  affected by the  new o p e r a t o r  whi le  the  t r ip le t  g r o u n d  s ta te  
d o m i n a t e d  by  a h igh-sp in  open- she l l  c o n f i g u r a t i o n  s h o u l d  be n o t i c e a b l y  i n c r e a s e d  
in energy.  As is d e m o n s t r a t e d  in T a b l e  1 the  to t a l  e n e r g y  h a r d l y  changes  for  the  1A1 
state  bu t  c o n s i d e r a b l y  for the  3B1 state.  T h e  e r ro r  in the  exc i t a t i on  e n e r g y  is 
r educed  f r o m  3.5 to 1.2 k c a l / m o l  w h e n  the  81 c o r r e c t i o n  is a d d e d  to  the  F o c k  
mat r ix .  H o w e v e r ,  an  i m p r o v e m e n t  o v e r  the  C A S S C F  va lue  c a n n o t  be o b t a i n e d  
wi th  any of  the  cor rec t ions .  

An  analys is  of  the  f i r s t -o rder  c o r r e c t i o n  to  the  w a v e  func t i on  gave  a h in t  o f  
o the r  cho ices  of  the ac t ive  space,  n a m e l y  the  (4220) a n d  (6331) ac t ive  spaces  (see 
T a b l e  1). T h e  (4220) ac t ive  space  is on ly  sl ightly l a rge r  t h a n  the  va lence  o rb i t a l  
space  bu t  the  C A S S C F  va lue  of  the  exc i t a t i on  ene rgy  d rops  d o w n  c o n s i d e r a b l y  
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indicating that the result obtained with the smaller active space was fortuitously 
good. All CASPT2 results are in better agreement with the FCI value now and 
especially those with a correction added to the Fock matrix are in an excellent 
agreement with FCI. The error is only 0.2 kcal/mol with the gl  correction. Also 
with the largest active space, (6331), CASPT2 with a corrected Fock matrix is 
superior to CASPT2[0].  

In addition, one can mention that the CASPT2[0]  results are similar to the 
MROPT1 results of Kozlowski and Davidson [17] and that the CASPT2[g~],  
CASPT2[gE], and CASPT2[g3] results are similar to their MROPT3 and 
MROPT4  results. 

3.2 The three lowest-lying states of Sill2 

The electronic structure of Sill2 is similar to that of CH2 except that the 1A1 state is 
lower in energy than the 3B 1 state. Third in energy is the 1B1 state. FCI calculations 
on these three states have been reported by Bauschlicher and Taylor [18] and 
information about basis sets and geometries can be found in Ref. [-18]. Only the six 
valence electrons were correlated and the active space consisted of the valence 
orbitals of silicon and hydrogen. The results are presented in Table 2. 

All three states are different in character: the ~A~ state is dominated by 
a closed-shell configuration, the 3B 1 state is dominated by a high-spin open-shell 
configuration, and the aBx state is dominated by a low-spin open-shell configura- 
tion. In designing the new zeroth-order Hamiltonian the attention was directed 
toward the closed-shell and the high-spin open-shell wave functions. Here we have 
a possibility to investigate the functioning of the new operator on other types of 
wave functions, namely the low-spin open-shell wave function. 

As was the case for the CHz molecule, the CASSCF method is able to predict 
the excitation energies for SiH2 fairly well. The_errors are about 1 kcal/mol. Also 
here the situation is severely worsened at the CASPT2I-0] level of theory because of 
the unbalanced treatment of the three states. The open-shell states (B1) are 

Table  2. T he  three lowest-lying states of Sill2. A compar i son  between C A S P T 2  and FCI  

M e t h o d  a Energy  (a.u.) Exc. energy (kcal/mol)  

IA 1 3B 1 1B 1 3BI -1A 1 1 B l - l A  ~ 

F C I  b -- 290.110207 - 290.082313 - 290.036639 17.50 

C A S S C F  - 290.042911 - 290.016813 - 289.967938 16.38 

C A S P T 2 [ 0 ]  - 290.095397 - 290.071304 - 290.025231 15.12 

C A S P T 2 1 9 1 ]  - 290.095257 - 290.068643 - 290.021907 16.70 

C A S P T 2 [ g z ]  - 290.095260 - 290.068506 - 290.021843 16.79 

CASPT21-g3] - 290.095375 - 290.068543 - 290.021940 16.84 

C A S P T 2 [ 0 ] - F C I  0.014810 0.011009 0.011408 

CASPT21-91 ] - F C I  0.014950 0.013670 0.014732 

C A S P T 2 1 9 2 ] - F C I  0.014947 0.013807 0.014796 

C A S P T 2 1 9 3 ]  F C I  0.014832 0.013770 0.014699 

46.16 

47.05 

44.03 

46.03 

46.07 

46.08 

a The  valence orbitals  are active in the C A S S C F  and  C A S P T 2  calculat ions 

b F C I  results f rom Ref. 1,18] 
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favoured over the closed-shell ground state (IA1) leading to too small excitation 
energies. The errors are larger than 2 kcal/mol. The new zeroth-order Hamiltonian 
is able to correct the situation and to treat all three states in a more balanced way. 
The difference in results for the three different corrections is only minor and with 
the gl  correction added to the Fock matrix the error in the 3Bl-lA~ splitting is 
0.8 kcal/mol and that for the 1B1 *A1 splitting only 0.1 kcal/mol. Only the valence 
orbital active space was applied for this molecule since an analysis of the first-order 
wave function did not motivate a slight enlargement of the active space. 

3.3 The doublet-doublet separation in NH 2 

In this test calculation the energy splitting between two states of similar character 
has been investigated, namely that of the 2B 1 and 2A 1 states  of NH2.  Both states 
are doublet states dominated by a high-spin open-shell configuration. FCI calcu- 
lations of Bauschlicher et al. [19] are available and information about basis sets 
and geometries can be found in the same paper. The seven valence electrons were 
correlated and the valence orbitals of nitrogen and hydrogen constituted the active 
space. 

As is demonstrated in Table 3 the excitation energy obtained with the CASSCF 
method is 3.6 kcal/mol larger than the FCI value. All CASPT2 methods are able to 
reduce that error to below 0.3 kcal/mol. The relative unimportance of the correc- 
tion to the Fock matrix in this particular example is due to the similar character of 
the two states  2B 1 and 2A 1. 

3.4 The potential surface of CH3 

The total energy of the CH3 molecule has been calculated at three geometries and 
compared to the FCI results of Bauschlicher and Taylor 1-20]. CH3 was taken as 

Table 3. The doublet-doublet separation in NH2. A comparison between CASPT2 and 
F C I  

Method" Energy (a.u.) Exc .  energy 
(kcal/mol) 

2B 1 2A 1 

F C I  b - -  55 .742620 - 55 .688762  

C A S S C F  - 55 .620752 - 55 .561066 

C A S P T 2 [ 0 ]  - 55 .730183 - -  55.676791 

C A S P T 2 [ g t  ] - 55.727933 - -  55 .674402  

C A S P T 2 1 9 2 ]  - 55 .727747 - 55 .674225 

C A S P T 2 1 9 3 ]  - 55 .727784 - 55 .674255 

C A S  P T 2  I - 0 ] - F C I  0 .012437 0 .011971 

C A S P T 2 [ 9 ~  ] - F C I  0 .014687 0 .014360  

C A S P T 2 1 9 2 ] - F C I  0 .014873 0 .014537  

C A S P T 2 [ - g 3 ]  F C I  0 .014836 0 .014507  

33.80 

37.45 

33.50 

33.59 

33.59 

33.59 

a The valence orbitals are active in the CASSCF and CASPT2 calculations 
b F C I  results from Ref.  [ 1 9 ]  
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Table 4. Total energies (in a.u.) of CH3 at three geometries. A comparison between 
CASPT2 and FCI 

39 

Method a ro 1.5*re 2.0. ro 

FCI b - 39.7212 - 39.4829 - 39.3031 
SCFb-FCI 0.1547 0.1989 0.2901 
CASSCF-FCI 0.0964 0.0737 0.0651 
CASPT2[-0] FCI 0.0125 0.0079 0.0058 
CASPT2[,g~]-FCI 0.0147 0.0114 0.0107 
CASPT2[,g2]-FCI 0.0148 0.0113 0.0108 
CASPT2[,g3]-FCI 0.0147 0.0109 0.0101 

The valence orbitals are active in the CASSCF and CASPT2 calculations 
b FCI and SCF results from Ref. [-20] 

planar and symmetric and calculations were performed at re, 1.5*re, and 2.0*re, 
where re is the equilibrium bond distance. For information about basis sets and 
geometries see Ref. [20]. The seven valence electrons were correlated and the 
valence orbitals of carbon and hydrogen formed the active space. The results are 
presented in Table 4. 

The deviation from the FCI potential curve is increased when a correction is 
added to the Fock matrix in the CASPT2 calculation. However, the size of the 
deviation is not of importance but the uniformity of it at all geometries is. Without 
a correction (CASPT2 [0]) the deviation is reduced 54% when going from rc to 2*r~ 
while with the gl  correction the same reduction is only 27%. Therefore, a correc- 
tion to the Fock matrix enables CASPT2 to create potential surfaces that are more 
parallel to the FCI surface. This is of importance in the calculation of equilibrium 
bond distances and harmonic frequencies. 

3.5 Dissociation energies for Na, NO, and 0 2 

Dissociation energies provide another test of the new zeroth-order Hamiltonian 
since here we have to compare total energies of electronic states of molecules and 
their fragments. The electronic ground state of a molecule is usually dominated by 
a closed-shell configuration or a high-spin open-shell configuration with a few 
open shells. The electronic structure of the fragments, on the other hand, is usually 
a configuration with several open shells. 

We will report the dissociation energies Dc of N2, NO, and 02. The results 
presented in Table 5 can be directly compared to the FCI results of Bauschlicher 
and Langhoff [21]. For basis sets and other computational details see Ref. [21]. 
Only the 2p electrons were correlated. The ls and 2s orbitals were optimized in the 
CASSCF calculations, but were uncorrelated in the CASPT2 calculations to allow 
comparison with the FCI  results. Two sets of calculations were performed: one 
with the 2p orbitals active and another with a doubling of the active space. 

With the small active space CASPT2 without a correction to the Fock matrix 
gives excellent results for all molecules. For  NO and 02 the error in dissociation 
energy is less than 0.1 eV. When a correction is added to the Fock matrix the 
situation is worsened. The dissociation energy is now overestimated with between 
0.1 and 0.3 eV for all three molecules. This failure can be explained in the following 
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Table 5. Dissociation energies Do (in eV) for N2, NO, and 02. A comparison 
between CASPT2 and FCI 

K. Andersson 

Method N 2 NO 02 

FCP 8.748 5.753 4.637 
2p active 

CASSCF-FCI - 0.415 - 0.853 - 0.959 
CASPT2[0]-FCI 0.126 - 0.061 0.021 
CASPT2[gl ]-FCI 0.128 0.230 0.306 
CASPT2[g2]-FCI 0.126 0.226 0.301 
CASPT2[g3]-FCI 0.129 0.212 0.252 

2p, 3p active 
CASSCF-FCI - 0.250 - 0.381 - 0.453 
CASPT2[0]-FCI - 0.057 - 0.038 - 0.024 
CASPT2[01]-FCI 0.026 0.045 0.054 
CASPT2192]-FCI 0.027 0.040 0.052 
CASPT2 [ g3 ]-FCI 0.028 0.039 0.037 

a The FCI results have been obtained using the FCI energies given in Ref. [21] 

way. At equilibrium distances the CASSCF wave function consists of  many  
configurations and CASPT2  is able to give a fairly good value of the total energy. 
At infinite distance, on the other  hand, the CASSCF wave function is essentially 
one configuration. The smaller flexibility of  the CASSCF wave function gives 
C A S P T 2  energies that  are too  high in energy. The result is an overestimated value 
of  the dissociation energy. The M R C I  + Q method also gives overestimated 
dissociation energies (see Ref. [21]), but  the error is an order  of magni tude less than 
what  we obtain here. Werner  and Knowles [22] have also shown that with the 
internally contracted M R C I  method the error  in the total energy is larger at infinite 
separation than at equilibrium bond distances for the nitrogen molecule. 

The fact that  CASPT2  [0] gives such excellent results can be explained by its 
favouring of systems with many  open shells. At infinite distance we have many  
open shells and we therefore get an artificial lowering of  the total energy. This 
lowering seems to compensate (at least for the N O  and O2 molecules) for the 
unflexibility of  the CASSCF wave function at this geometry. However,  these two 
anomalous  effects may  not  always cancel each other. 

With the enlarged act ive space the uncorrected and corrected C A S P T 2  
methods  all give errors of the same order of  magnitude. Interesting to notice is that  
the value for the dissociation energy of 0 2  is not  improved at the C A S P T 2 [ 0 ]  level 
of theory by doubl ing the active space. This may  indicate a fortuitously good  result 
with the small active space. 

These calculations also made possible the determination of the equilibrium 
bond  distances. These were hardly affected by the correction to the Fock  matrix. 
They were modified by less than 0.005 au. 

3.6 The nitrogen molecule 

Excitation energies and spectroscopic constants  have been calculated for the 
ni trogen molecule using an extended basis set of the atomic natural  orbital (ANO) 
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type of the size (5s4p3d2f). Here no FCI data are available so comparison is made 
with the experimental data and results obtained at the MRCI level of theory. In all 
calculations the ten valence electrons were correlated. In the CASSCF and 
CASPT2 calculations the 2s and 2p orbitals formed the active space while in the 
MRCI calculations the 2s orbitals were inactive and the 2p orbitals active. The 
MRCI expansion consisted of all single and double excitations out of all configura- 
tions obtained by distributing the remaining six electrons in the 2p orbitals. With 
the 2s electrons inactive in the reference configurations, only double excitations 
from this orbital space are included, which leads to an imbalance in the treatment 
of the dissociation. As suggested by Alml6f et al. [23] this is compensated by the 
inclusion of the multireference Davidson correction (MRCI + Q). 

Some spectroscopic constants obtained with the MRCI and CASPT2[0] 
methods for the three lowest-lying states of N2 have already been reported [12]. In 
that work the equilibrium bond distance (to) and the harmonic vibrational fre- 
quency (we) were obtained by a fit to a second-degree polynomial in 1/R using three 
points with 0.05 a.u. separation. These results are included in Table 6 .The  results 
for the two excited states are unsatisfactory at the CASPT2[0] level of theory. As 
a matter of fact it is the appearance of singularities close to equilibrium that 
deteriorates the potential curves giving in particular erroneous values of we. 

The CASSCF and CASPT2 calculations were repeated, now with the gl 
correction added to the Fock matrix. Many more points on the potential surface 
were calculated for an accurate determination of the spectroscopic constants. The " 
results are exposed in Table 6. With the gl correction there are no singularities in 

Table 6. Spectroscopic constants  for N2 with an ANO(5s4p3d2f) basis set. A comparison between 
CASPT2, MRCI,  and experiment 

Method" re (A.) De (eV) we (cm- 1 ) wo go (cm - 1) Be (cm-  1 ) 

X ~ Z +, the ground state 
CASSCF 1.105 9.192 2336 12.82 1.974 
CASPT2[0]  1.103 9.224 2306 
CASPT2[g~]  1.102 9.618 2332 13.25 1.981 
MRCI  + Q 1.104 9.504 2308 
Expt. u 1.098 9.905 2359 14.32 1.998 

A 3 Z +, the first excited state 
CASSCF 1.302 2.760 1416 13.97 1.420 
CASPT2[0]  1.281 3.331 3867 
C A S P T 2 [ g l ]  1.291 3.540 1445 14.00 1.444 
MRCI  + Q 1.296 3.456 1426 
Expt. b 1.287 3.680 1461 13.87 1.455 

B 3 lqg, the second excited state 
CASSCF 1.230 3.974 1679 14.14 1.593 
CASPT2[-0] 1.206 4.601 2294 
C A S P T 2 [ g l ] ,  1.214 5.059 1732 14.16 1.632 
MRCI  + Q 1.222 4.879 1710 
Expt. b 1.213 4.896 1733 14.12 1,637 

The 2s orbitals are active in the CASSCF 
calculations 
b Experimental data  from Ref. [26] 

and CASPT2 calculations and inactive in the MRCI + Q ,  
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Table 7. Excitation energies To between the three lowest-lying states of N2 obtained with an 
ANO(5s4p3d2f) basis set. A comparison between CASPT2, MRCI, and experiment 

M e t h o d "  Energy (a.u.) A 3 Z + - -  X 1 32 + B 3 I ] g  - X 1 Y~+ 

(eV) (eV) 
X 1 Z + A 3 E + B 3 I I g  

C A S S C F  - 1 0 9 . 1 3 9 3 5 4  - 1 0 8 . 9 0 2 9 7 8  - 1 0 8 . 8 4 2 6 9 5  6 . 4 3  8 . 0 7  

C A S P T 2 [ 0 ]  - 1 0 9 . 3 7 2 6 9 7  - 1 0 9 . 1 5 5 7 9 9  - 1 0 9 . 1 1 2 9 1 1  5 . 9 0  7 . 0 7  

C A S P T 2 1 9 1 ]  - 1 0 9 . 3 7 2 3 7 9  - 1 0 9 . 1 4 9 0 1 3  - 1 0 9 . 1 1 2 4 8 2  6 . 0 8  7 . 0 7  

M R C I  + Q - 1 0 9 . 3 9 6 0 8 0  - 1 0 9 . 1 7 3 6 9 1  - 1 0 9 . 1 3 5 4 3 6  6 . 0 5  7 . 0 9  

E x p t .  b - -  - -  - -  6 . 2 2  7 . 3 9  

"The 2s orbitals are active in the CASSCF and CASPT2 calculations and inactive in the MRCI + Q 
calculations 
b Experimental data from Ref. [26] 

the potential curve for any of the three states. The harmonic frequencies are in 
a very good agreement with experimental results and also with those obtained with 
the MRCI  method. Also an improvement of the equilibrium bond distances is 
achieved with gx added to the Fock matrix, especially for the two excited states. 
The great improvement of the re and we values due to gl  for the excited states can 
be explained by the removal of singularities. With no singularities present, as for 
the ground state, the impact of gx is less. The dissociation energy (De) is the 
parameter  that should be most affected by gl-  CASPT2[0]  underestimates the 
dissociation energy with between 0.12 and 0.28 eV and C A S P T 2 [ g l ]  overesti- 
mates it with between 0.08 and 0.18 eV compared to MRCI.  This is in accordance 
with the results obtained for N2, NO, and O2 with a smaller basis set. With 
a correction to the Fock matrix, CASPT2 thus has a tendency to overestimate 
dissociation energies when compared to more accurate methods like FCI and 
MRCI.  Compared to experimental data, CASPT2 [0] underestimates the dissocia- 
tion energy for the three lowest-lying states of N 2 with between 0.30 and 0.68 eV. 
The errors at the C A S P T 2 [ g l ]  level of theory is between - 0.16 and 0.29 eV, and 
De for the two lowest-lying states is underestimated. This is due to the deficiency of 
the basis set. The molecule requires a larger basis set at equilibrium than at infinite 
separation for saturated values of the total energy. In conclusion, in many  cases one 
can expect the largest basis set errors at equilibrium distances and the largest errors 
due to deficiencies of the CASPT2 method at infinite distances. These two sources 
of errors may sometimes cancel each other to give accurate values of the dissocia- 
tion energy. We will return to this point in the next subsection. 

As an outcome of the calculations the excitation energies (Te) between the three 
lowest-lying states of N2 can be determined. The results are presented in Table 7. 
The excitation energies obtained with CASPT2[g l ]  are in almost complete 
accordance with the MRCI  values. The CASPT2 [0] values are included in Table 7 
even though a comparison with other methods is questionable because of the 
deterioration of the potential curves of the two excited states. 

3.7 Dissociation energies for  some benchmark molecules 

The dissociation energies obtained with CASPT2 [0] of a large number  of molecu- 
les containing first-row atoms have already been reported [15]. These molecules 
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were originally included in a systematic test by Pople and co-workers of their 
Gaussian-1 (G1) theory [241. With CASPT2[-0] large errors of the dissociation 
energy are expected, especially when the difference of the number of electron pairs 
in the molecule and in its fragments differ. A typical example is the N2 molecule 
where the difference in pairs is three and the error of the dissociation energy is 
17.8 kcal/mol compared to the experiment. 

The calculations were repeated for some of the molecules, now with the gl 
correction added to the Fock matrix. The results are presented in Table 8 together 
with those obtained with CASPT2[0] for comparison. ANO type basis sets of the 
size (Li-F, 5s4p3d2f) and (H,3s2pld) were used. The core orbitals were uncorrelated 
and the active spaces were formed by the hydrogen ls orbital, the Li-C 2s and 2p 
orbitals, and the N - F  2p orbitals. Other computational details can be found in 
Ref. [15]. 

Although the number of molecules in this test is small one can conclude that the 
error of the dissociation energy compared to experiment is independent of the 
difference of the number of electron pairs in the molecule and in the atoms. We 
seem to have removed the systematic error proportional to this difference but we 
have not removed all errors. We still have errors due to deficiencies of the basis sets 
which usually lead to underestimated dissociation energies and errors due to the 
quality of the CASSCF wave function which usually lead to overestimated values. 
O2 is a typical example of this last source of errors. 

There is something else of interest to notice from Table 8. First, when the 
difference in the number of electron pairs is zero the errors with CASPT2[0]  and 
CASPT2[g l ]  are similar as one would expect them to be. Second, also for the H2, 
LiH, and Li2 molecules the errors are similar for the two methods even though the 
difference of the number of electron pairs is one. This is due to the fact that at 
infinite separation the CASSCF wave function is the exact wave function for the 
given basis set and at equilibrium distances these three molecules are closed-shell 
species giving minor differences between CASPT2[0]  and CASPT2[g l  ]. 

The most annoying result in Table 8 is the highly overestimated result of the 
dissociation energy of 02 .  However, it is in accordance with the result obtained in 
Sect. 3.5. A doubling of the active space brings the error to a reasonable size, 
namely - 0.1 kcal/mol. CASPT2[0],  on the other hand, underestimates the value 
by 5.4 kcal/mol compared to the experiment with the enlarged active space. 

In addition tO the dissociation energies we obtained the equilibrium bond 
distances in these calculations. As in Sect. 3.5 they are modified by only a few 
thousands of an AngstrSm when going from CASPT2[0]  to CASPT2[g l ] .  Usu- 
ally, the geometries are slightly improved with CASPT2[9~ ]. 

4 Conclusions 

A new one-particle zeroth-order Hamiltonian is proposed for a perturbation 
theory with a CASSCF reference wave function. The new partitioning of the 
Hamiltonian is designed to treat reference functions dominated by a closed-shell 
configuration, on the one hand, and an open-shell configuration, on the other 
hand, in similar and balanced ways. This leads to better descriptions of excitation 
energies and dissociation energies. Since these are the properties that are mostly 
affected by the new partitioning they have been extensively studied in this article. 
Excitation energies are considerably improved by the new partitioning while 
dissociation energies are in general improved but in some cases overestimated. The 
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computed excitation energies for the CH2, Sill2, NH2, and N2 molecules compare 
very well with corresponding FCI and MRCI  values. In most cases studied the 
errors are well below 1 kcal/mol. 

The dissociation energies, on the other hand, have a tendency to be overes- 
timated in the new treatment when compared to other more accurate methods. 
However, basis set deficiencies usually will lead to underestimated values of the 
dissociation energies when compared to experimental data. In a test comprising 15 
molecules we were able to show that the error in dissociation energy compared to 
experiment no longer is proportional to the difference between the number of 
electron pairs in the molecule and in the atoms. A nice illustration of this is the CO2 
molecule where the difference between the number of electron pairs is three and 
CASPT2[0]  gives an error of 16.4 kcal/mol. With the new zeroth-order Hamil- 
tonian the error is brought down to 0.4 kcal/mol. We seem to have removed the 
systematic error described above but we certainly have not removed all errors, In 
our test of 15 molecules the error is within ___ 10 kcal/mol. Previously the error was 
between 0 and 20 kcal/mol. 

The main effect of the new partitioning of the Hamiltonian can be summarized 
as an enlargement of the energy gap between the active and secondary orbitals. The 
enlargement is small for CASSCF wave functions dominated by a closed-shell 
configuration. For  many systems, like the two lowest-lying excited states of N2, the 
increment of the energy gap causes singularities in the potential curves to disap- 
pear. The same phenomenon has been noticed for the chromium dimer. While the 
potential curve computed with CASPT2[0]  is cluttered with singularities, the one 
obtained with CASPT2[g l ]  only contains a few of them. These findings will be 
reported elsewhere [25]. However, an enlargement of the energy gap between the 
active and secondary orbitals is not always beneficial. If inactive orbitals high in 
energy are present then the decreased energy gap between them and the active 
orbitals may lead to the introduction of new singularities. This has actually been 
observed in test calculations on the CrF6 molecule. The zeroth-order Hamiltonian 
introduced here therefore does not constitute the ultimate choice of a zeroth-order 
Hamiltonian in multiconfigurational second-order perturbation theory. But the 
operator presented here has the advantage of being simple in structure and causes 
only minor modifications of our present computer implementation of CASPT2. 
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